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global U(1)R symmetry as models of dynamical supersymmetry (SUSY) breaking. We

introduce explicit R-symmetry breaking terms into such models, in particular a generalized

O’Raifeartaigh model. Such explicit R-symmetry breaking terms can lead to a SUSY

preserving minimum. We classify explicit R-symmetry breaking terms by the structure of

newly appeared SUSY stationary points as a consequence of the R-breaking effect, which

could make the SUSY breaking vacuum metastable. We show that the R-breaking terms are

basically divided into two categories. One of them does not generate a SUSY solution, or

yields SUSY solutions that disappear in the case of supergravity when we tune a parameter

so that the original SUSY breaking minimum becomes a Minkowski vacuum. We also show

that the general argument by Nelson and Seiberg for a dynamical SUSY breaking still holds

with a local SUSY except for a certain nontrivial case, and present concrete examples of

the exception.
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1. Introduction

Supersymmetric extensions of the standard model are promising candidate for the physics

around TeV scale. Supersymmetry (SUSY) can stabilize the huge hierarchy between the

weak scale and the Planck scale, and supersymmetric models with R-parity have the lightest

superparticle as a good candidate for the dark matter. In addition, the minimal SUSY

standard model realizes the unification of three gauge couplings at a scale MGUT ∼ 2 ×
1016 GeV, which may suggest some underlying unified structure in the nature.

In our real world, the SUSY must be broken with certain amount of the gaugino and

scalar masses. The dynamical SUSY breaking has a big predictability of the structure of

such SUSY particles. It was shown by Nelson and Seiberg (NS) [1] that a global U(1)R sym-

metry is necessary for a spontaneous F-term SUSY breaking at the ground state of generic
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models with a global SUSY. This predicts an appearance of massless Goldstone mode, R-

axion, in dynamically SUSY breaking models with nonvanishing Majorana gaugino masses

which breaks U(1)R symmetry.1

Recently, it has been argued by Intriligator, Seiberg and Shih (ISS) [4] that the SUSY

breaking vacuum we are living can be metastable for avoiding the light R-axion and also

obtaining gaugino masses, and that such situation can be realized by a tiny size of explicit

U(1)R breaking effects, whose representative magnitude is denoted by ǫ. Such explicit R-

symmetry breaking terms can lead to a SUSY minimum, but such newly appeared SUSY

minimum could be far away from the SUSY breaking minimum, which is found in the

R-symmetric model without explicit R-symmetry breaking terms. Furthermore, such R-

symmetry breaking terms would not have significant effects on the original SUSY breaking

minimum, because R-symmetry breaking terms are tiny. The distance between the orig-

inal SUSY breaking minimum and the newly appeared SUSY preserving minima may be

estimated as O(1/ǫ) in the field space. Thus, if R-symmetry breaking terms, i.e., the size

of ǫ, are sufficiently small, the original SUSY breaking minimum would be a long-lived

metastable vacuum.

On the other hand, an introduction of gravity into SUSY theories requires that the

SUSY must be a local symmetry, i.e., supergravity. In supergravity, the structure of the

scalar potential receives a gravitational correction, and also the background geometry of

our spacetime is determined by the equation of motion depending upon the vacuum energy.

In the above global SUSY model with metastable SUSY breaking vacuum, some fields have

large vacuum values at the SUSY preserving vacuum. In such a case, supergravity effects

might be sizable. Another important motivation to consider supergravity is to realize

the almost vanishing vacuum energy. The global SUSY model always has positive vacuum

energy at the SUSY breaking minimum. Supergravity effects could realize almost vanishing

vacuum energy.

F-flat conditions have supergravity corrections. Thus, the supergravity model with

global U(1)R symmetry would have different aspects from the global SUSY model. Fur-

thermore, adding R-symmetry breaking terms would have different effects between global

and local SUSY theories. Here we study in detail generic aspects of global and local SUSY

theories with R-symmetry and generic behaviors caused by adding explicit R-symmetry

breaking terms. That is, we reconsider the above argument for the dynamical SUSY

breaking and its metastability by NS and ISS comparing global and local SUSY theories.

The important keypoint is to realize the almost vanishing vacuum energy. That is

impossible in the SUSY breaking vacuum of global SUSY models, and that is a challenging

issue in supergravity models. The vacuum energy may be tuned to vanish, e.g., by the

constant superpotential term, which is a sizable R-symmetry breaking term. That would

affect all of vacuum structure such as metastability of SUSY breaking vacua and presence

of SUSY preserving vacua. Here we study this vacuum structure by using several con-

crete models, where we start R-symmetric models and add certain classes of R-symmetry

breaking terms such that the vanishing vacuum energy is realized.

1See for recent works on R-symmetry breaking, e.g. refs. [2 – 9] and references therein.
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The following sections are organized as follows. In section 2, we study a structure

of dynamical SUSY breaking in R-symmetric models with global SUSY. We consider the

generalized O’Raifeartaigh (OR) model [10] following [4]. We introduce explicit R-breaking

terms into the model and analyze in detail the newly appeared SUSY vacua as a conse-

quence of the R-symmetry breaking effects. We also examine the stability of the original

SUSY breaking vacuum under such R-breaking terms.

In section 3, we consider supergravity models with R-symmetry. We extend the ar-

gument by NS to the local SUSY theories and study the supergravity OR model. In

this section, we also show a special SUSY stationary point, which does not obey the NS

condition, and the associated SUSY breaking vacuum in a certain class of R-symmetric

supergravity models. We introduce explicit R-breaking terms into the supergravity OR

model in section 4 and classify them by the consequent SUSY solutions.

In section 5, we study the case with R-symmetry breaking terms (A-type) which might

not cause a metastability of SUSY breaking minimum, because corresponding SUSY vacua

disappear when we set the vacuum energy at the SUSY breaking minimum vanishing. On

the other hand, in section 6, we show that another class of R-symmetry breaking terms

(B-type) makes SUSY breaking minimum metastable. Section 7 is devoted to conclusions.

In appendix A, we show some general features of R-axion masses, and find that the special

SUSY solution exhibited in section 3 is at best a saddle point solution.

2. Global supersymmetric theory

2.1 R-symmetric model

First, we review briefly the argument by Nelson and Seiberg [1] in R-symmetric global

SUSY models. Let us consider the global SUSY model with n chiral superfields zI (I =

1, . . . , n) and their superpotential W (zI). In the case of global SUSY, F-flat conditions are

determined by

WzI
= 0, (2.1)

where WzI
= ∂zI

W . Hereafter we use a similar notation for derivatives of functions H(X)

by fields X as HX . The conditions (2.1) are n complex equations for n complex variables,

and these can have a solution for generic superpotential.

Now, we consider global SUSY models with a continuous global U(1)R symmetry and

a nonvanishing superpotential. Since the superpotential has the R-charge 2, there exists at

least one field with a nonvanishing R-charge. Suppose that the n-th component zn is such

a field with the nonvanishing R-charge, qzn 6= 0. Then, in the following field basis

χi =
zi

z
qzi

/qzn
n

, (qχi
= 0),

Y = zn, (qY = qzn 6= 0), (2.2)

where i = 1, 2, . . . , n − 1, the superpotential can be written as

WNS = Y 2/qY ζ(χi). (2.3)
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Then the F-flat conditions (2.1) are split into two pieces,

(2/qY )Y 2/qY −1ζ(χi) = 0, (2.4)

Y 2/qY ∂χj
ζ(χi) = 0. (2.5)

When we look for an R-symmetry breaking vacuum, 〈Y 〉 6= 0, these conditions are equiva-

lent to

ζ(χi) = 0, ∂χj
ζ(χi) = 0, (2.6)

which are n complex equations for n − 1 complex variables, that is, these are over-

constrained conditions. These cannot be satisfied at the same time for a generic function

ζ(χi), and the SUSY can be broken. This is an observation by Nelson and Seiberg [1] that

the existence of an R-symmetry is the necessary condition for a dynamical SUSY breaking,

and is also the sufficient condition if the R-symmetry is spontaneously broken, 〈Y 〉 6= 0.

However, the scalar potential, which is obtained from the superpotential (2.3) and the

Kähler potential K(|Y |, χi, χ̄i), is found to have the global minimum at Y = 0, unless the

Kähler potential K(|Y |, χi, χ̄i) is non-trivial. Thus, SUSY is not broken dynamically with

the NS superpotential (2.3).

The O’Raifeartaigh model [10] is a good example of R-symmetric SUSY models, where

SUSY is spontaneously broken. Its generalization is shown in ref. [4] as the generalized OR

model, which has the following superpotential,

WOR =
∑

a

ga(φi)Xa, (2.7)

where a = 1, 2, . . . , r and i = 1, 2, . . . , s, and the numbers of fields are constrained as r > s.

Their R-charges are assigned as qXa = 2 and qφi
= 0, and ga(φi) is a function of φi. In this

model, F -flat conditions for Xa are just given by

∂XaW = ga(φi) = 0. (2.8)

These are r complex equations for s complex valuables, that is, these are over-constrained

conditions for r > s. Therefore, there is no SUSY solution satisfying (2.8) for generic

functions ga(φi) with r > s. The superpotential of the generalized OR model (2.7) is a

specific form of the NS superpotential (2.3). In the generalized OR model, SUSY is always

spontaneously broken independently of whether R-symmetry is spontaneously broken or

not, or the fields Xa develop nonvanishing vacuum expectation values or not.

The simplest OR model is the model with r = 1 and s = 0, and has the superpotential

W(OR)1 = fX1,

where f is a constant. Obviously, SUSY is spontaneously broken in this model, because

WX1
= f . The basic O’Raifeartaigh model corresponds to the model with r = 2 and s = 1,

and g1(φ) = f + 1
2hφ2 and g2(φ) = mφ, and has the following superpotential,

W(OR)basic
=

(

f +
1

2
hφ2

)

X1 + mφX2. (2.9)
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The model has only a SUSY breaking pseudo-moduli space,

φ = X2 = 0, X1 : undetermined, (2.10)

with WX1
= f as a global minimum of the potential. When integrating out heavy modes X2

and φ, we obtain W(OR)1 as an effective superpotential. However, the flat direction along

X1 is lifted at the one-loop level by integrating out φ, and the SUSY breaking vacuum in

the quantum corrected OR model is given by

φ = X2 = X1 = 0. (2.11)

These simple models suggest that the tadpole term of Xa is important for SUSY

breaking. Indeed, we can show by simple discussion that non-vanishing terms of ga(φi) at

φi = 0 are sources of SUSY breaking. We assume that ga(φi) are non-singular functions.

Then, we can always rewrite the superpotential (2.7) as

WOR =
∑

a

faXa +
∑

a

ǧa(φi)Xa

= f̃ X̃1 +
∑

a

g̃a(φi)X̃a, (g̃a(0) = 0), (2.12)

where fa = ga(0), ǧa(φi) = ga(φi) − fa, X̃a = UabXb, g̃a(φi) = ǧaU
†
ab and Uab is a constant

unitary matrix defined by faU
†
ab = f̃b = (f̃ , 0, . . . , 0). In the following, we will frequently

use this basis of fields and omit the tildes to simplify the notation. In this basis, the F-flat

conditions for Xa, eq. (2.8), are written by

WXa = ga(φi) − δa1f = 0. (2.13)

Together with Wφi
=

∑

a Xa∂φi
ga(φi) = 0, we find that, if f = 0, there is a solution

Xa = φi = 0 and SUSY is not broken. Then it is obvious in the field basis (2.12) that a

nonvanishing f is the source of dynamical SUSY breaking in the generalized OR model.

In the generalized OR model with the above field basis, the field X1 plays a special

role, while each of Xa (a 6= 1) has the qualitatively same character as others Xb (b 6= 1).

Thus, the simple model with r = 2 and s = 1, and the superpotential,

W(OR)2 = (f + g1(φ))X1 + g2(φ)X2,

shows qualitatively generic aspects of the generalized OR model. Its scalar potential is

written as

V = |f + g1(φ)|2 + |g2(φ)|2 + |Wφ|2,

and stationary conditions are obtained as

VX1
= Wφg′1(φ) = 0,

VX2
= Wφg′2(φ) = 0,

Vφ = WφWφφ + (f + g1(φ))g′1(φ) + g2(φ)g′1(φ) = 0,
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where g′a(φ) = dga(φ)/dφ and Wφ =
∑

a Xag
′
a(φ). Unless Wφ does not vanish, we would

have over-constrained conditions, i.e., g′1(φ) = g′2(φ) = 0 for generic functions. Thus, in

general, the solution of the above stationary conditions corresponds to

Wφ = X1g
′
1(φ) + X2g

′
2(φ) = 0,

(f + g1(φ))g′1(φ) + g2(φ)g′1(φ) = 0. (2.14)

The latter is the condition to fix φ. For a fixed value of φ, a ratio between X1 and X2 is

fixed by the former condition, but the linear combination

X1g
′
2(φ) − X2g

′
1(φ), (2.15)

remains undetermined. That is the pseudo-flat direction, and would be lifted by loop

effects. Similarly we can discuss models with several fields Xa and φi (r > s).

2.2 Explicit R-symmetry breaking and metastable vacua

In order to have Majorana gaugino masses in addition to soft scalar masses, the R-symmetry

must be broken spontaneously or explicitly at the SUSY breaking minimum we are living.

On the other hand, as shown in the previous section, the NS argument requires an exact R-

symmetry for the dynamical SUSY breaking. Then, an appearance of an unwanted massless

Goldstone mode, an R-axion, is inevitable in such R-symmetry breaking minimum. Does

this mean the dynamical SUSY breaking is phenomenologically disfavored ?

Recently, it has been argued by Intriligator, Seiberg and Shih [4] that our world must

reside in a metastable state, in order to avoid the above conflict between gaugino masses

and the R-axion. The arguments are as follows. Consider a theory with an approximate

R-symmetry which has a small R-symmetry breaking parameter ǫ. In the limit ǫ → 0, the

R-symmetry becomes exact, and the theory possesses a SUSY breaking ground state due to

the NS argument. For a nonzero but tiny parameter ǫ, this SUSY breaking minimum still

remains as a local minimum of the potential, although there appear SUSY ground states

somewhere in the field space due to explicit R-symmetry breaking effects. As long as the

parameter ǫ is small enough, the separation between the SUSY breaking minimum and

the supersymmetric vacua is large, and the former can be a long-lived metastable vacuum.

These facts were exhibited by ISS based on the O’Raifeartaigh model as a simple example

of dynamical SUSY breaking model with R-symmetry. Indeed, such O’Raifeartaigh-type

model can be realized in some region of the moduli space of SUSY Yang-Mills theories [11].

Here following the discussion by ISS we study generic aspects of explicit R-symmetry

breaking terms, and SUSY preserving vacua. We also classify explicit R-symmetry breaking

terms in global SUSY models. In addition, we discuss metastability.

The simplest R-symmetry breaking term is the constant term WR/ = c, but the constant

term does not play any role in global SUSY theory. Thus, we do not discuss about adding

constant term in this section. It is obvious that when we add any R-symmetry breaking

term WR/(Y, χ) to the NS superpotential (2.3), that can relax over-constrained conditions

and F-flat conditions can have SUSY solutions.
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The generalized OR model has richer structure in explicit R-symmetry breaking terms.

To see such structure, we consider the generalized OR model with three types of typical R-

symmetry breaking terms, i) a function including only φi fields WR/ = w(φ), ii) a function

including only Xa (a 6= 1), WR/ = w(Xa), and iii) a function including only X1, WR/ =

w(X1). The first type of R-symmetry breaking terms WR/ = w(φ) do not change F-flat

conditions for Xa, i.e., ∂XaW = fδa1 + ga(φi) = 0. Hence, there is no SUSY solution.

For the second type of R-symmetry breaking terms WR/ = w(Xa) (a 6= 1), F-flat

conditions are obtained as

WX1
= f + g1(φi) = 0,

WXa = ga(φi) + wXa(Wa) = 0 for a 6= 1,

Wφi
=

∑

a

Xa∂φi
ga(φi) = 0.

Thus, if wXa(Wa) 6= 0 for all of Xa, over-constrained conditions can be relaxed and a

SUSY solution can be found. If all of φi vanish, we have g1(φi) = 0 and the condition

WX1
= 0 can not be satisfied. Hence, the SUSY minimum, which appears by adding

WR/ = w(Xa) (a 6= 1), corresponds to the point, where some of φi develop nonvanishing

vacuum expectation values.

For the third type of R-symmetry breaking terms WR/ = w(X1), F-flat conditions are

obtained as

WX1
= f + g1(φi) + ∂X1

w(X1) = 0,

WXa = ga(φi) = 0 for a 6= 1,

Wφi
=

∑

a

Xa∂φi
ga(φi) = 0.

If r = s + 1, the over-constrained conditions can be relaxed. In this case, the point φi = 0

for all of i can be a solution for WXa = 0 for a 6= 1. Furthermore, the conditions,

f + ∂X1
w(X1) = 0,

∑

a

Xa∂φi
ga(φi) = 0,

should be satisfied.

When R-symmetry breaking terms include X1 and Xa (a 6= 1), over-constrained con-

ditions can be relaxed and a solution for F-flat conditions would correspond to φi 6= 0 for

some of φi.

The SUSY breaking minimum is found in the generalized OR model without explicit

R-symmetry breaking terms, as discussed in the previous subsection. As discussed above,

SUSY vacua can appear, when we add the definite form of explicit R-symmetry break-

ing terms to the generalized OR model. Thus, the previous SUSY breaking minimum is a

metastable vacuum, if such R-symmetry breaking effects are small around the SUSY break-

ing minimum and the SUSY breaking vacuum itself is not destabilized by such R-symmetry

breaking terms.

As an illustrating example, we consider the basic OR model (2.9) with explicit R-

symmetry breaking terms. ISS introduced an explicit R-symmetry breaking term in the

– 7 –
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superpotential,2 W = W(OR)basic
+ WR/, where

WR/ =
1

2
ǫmX2

2 . (2.16)

In this case, there appears a SUSY minimum,

φ =

√

−2f

h
, X2 = −1

ǫ
φ, X1 =

m

ǫh
,

which is far away from the (local) SUSY breaking minimum (2.11) for a sufficiently small

ǫ ≪ 1. In addition, the SUSY breaking minimum is not destabilized by the above R-

symmetry breaking term (2.16). Then the original SUSY breaking vacuum (2.11) becomes

metastable which can be parametrically long-lived for ǫ ≪ 1.

Instead, if we consider the following R-breaking term [13]

WR/ =
1

2
ǫmX2

1 , (2.17)

the newly appeared SUSY point is found as

φ = X2 = 0, X1 = − f

ǫm
.

In this case, the pseudo-moduli space (2.10) disappears at the tree level. However, the

SUSY breaking point (2.11) remains as a local minimum due to the one-loop mass for X1,

but becomes metastable. Then the situation is similar to the above example. We easily

find that any R-breaking terms which consist of only φ do not restore SUSY.

Now, let us study whether the SUSY breaking minimum, which is found without

R-symmetry breaking terms, is destabilized by adding R-symmetry breaking terms. We

consider the generalized OR model with (r = 2, s = 1), i.e., W(OR)2 , whose stationary

conditions (2.14) are studied in the previous subsection. Their solutions are denoted by

Xa = X
(0)
a and φ = φ(0). First, we add a small R-symmetry breaking term, WR/ = ǫw(X2),

which depends only on X2. Then, the scalar potential is written as

V = |f + g′1(φ)|2 + |g2(φ) + ǫw′(X2)|2 + |Wφ|2,

where Wφ = X1g
′
1(φ) + X2g

′
2(φ). In addition, we assume that the stationary conditions of

V are satisfied by Xa = X
(0)
a + δXa and φ = φ(0) + δφ, and that all of δXa and δφ are of

O(ǫ). For example, the stationary condition along φ, Vφ = 0, gives the following condition,

(

∑

a

|g′a(φ(0))|2 +
∑

a

(fδa1 + ga(φ(0)))g′′a(φ(0)))

)

δφ + ǫg′2(φ
(0)) w′(X0

2 ) = 0,

where we have used the stationary conditions (2.14) at Xa = X
(0)
a and φ = φ(0). This is

the equation to determine δφ. The stationary condition along X1, VX1
= 0, reduces to

g′1(φ
(0)) δWφ = 0,

2See also ref. [12].
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where

δWφ =
∑

a

g′a(φ
(0))δXa +

∑

a

X(0)
a g′′a(φ)δφ.

Thus, this shows a relation among δXa and δφ unless g′1(φ
(0)) = 0. On the other hand, the

stationary condition along X2, VX2
= 0, leads to the following equation,

ǫw′′(X
(0)
2 ) g2(φ(0)) = 0.

This is not an equation among δXa and δφ, but implies that the stationary condition is

destabilized unless w′′(X
(0)
2 ) g2(φ(0)) = 0. In the above basic O’Raifeartaigh model, we

have g2(φ
(0)) = 0. Thus, the SUSY breaking minimum is not destabilized by adding the

mass term of X2, w(X2) = 1
2mX2, i.e., w′′(X2) 6= 0 at X2 = 0.

Now, let us add an R-symmetry breaking term, WR/ = ǫw(X1), which depends only on

X1. Similarly, we can examine stationary conditions of the scalar potential,

V = |f + g′1(φ) + ǫw′(X1)|2 + |g2(φ)|2 + |Wφ|2.

The stationary conditions along X2 and φ give an equation to determine δφ and a relation

among δXa and δφ. However, the stationary condition along X1, VX1
= 0, leads to

w′′(X
(0)
1 )

(

f + g1(φ(0))
)

= 0.

If this condition is not satisfied, the stationary condition at the SUSY breaking vacuum is

destabilized. Indeed, the basic O’Raifeartaigh model has f + g1(φ) = f at φ = 0. Thus,

when we add the mass term of X1, w(X1) = 1
2mX2

1 , i.e., w′′ 6= 0, the SUSY breaking

minimum become destabilized at the tree level as shown above. Note that this kind of

destabilization would be related to the existence of the flat direction (2.15) in the OR

model with global SUSY.3

The above discussion shows that adding generic R-symmetry breaking terms can desta-

bilize the SUSY breaking minimum, which is found in the model without such explicit R-

symmetry breaking terms. In order to realize metastability of the original SUSY breaking

minimum, we need a certain type of R-symmetry breaking terms. Alternatively, loop-effects

would be helpful not to destabilize the original SUSY breaking minimum by R-symmetry

breaking terms.

3. R-symmetry in supergravity

In the previous section, based on the argument by ISS, we have shown that some sort of

explicit R-symmetry breaking terms can restore SUSY, and the original SUSY breaking vac-

uum can become metastable when a certain (but not generic) class of explicit R-symmetry

breaking terms are added and/or loop effects stabilize the original SUSY breaking mini-

mum. The metastable minimum can be parametrically long-lived if the coefficient of the

3Such flat direction would be lifted by supergravity effects.
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R-breaking term is sufficiently small with which the SUSY ground state is far from the

metastable state in the field space.

This argument has been performed in a decoupling limit of gravity. As we find in the

above discussion, however, we have to treat a large distance between some separated minima

in the field space. This may imply that large vacuum values of some fields might be involved

in the analysis, where supergravity effects could become sizable. Moreover, in global SUSY,

the SUSY breaking minima always have a positive vacuum energy with the magnitude of

the SUSY breaking scale, which never satisfies the observation that the vacuum energy

almost vanishes. In such a sense, we would be forced to consider supergravity.

Note that, even in supergravity, it is often a hard task to tune the vacuum energy at

the stationary points of the scalar potential to be almost vanishing. This might require a

large R-symmetry breaking effect specialized to supergravity, i.e., a constant term in the

superpotential [14]. The existence of such a special R-symmetry breaking term could also

affect the ISS argument of metastability. Loop effects have contributions to the vacuum

energy. Here we assume that such loop effects are subdominant, and we tune our parameters

such that we realize V ≈ 0 at the tree level. Hereafter we use the unit with MPl = 1, where

MPl denotes the reduced Planck scale.

3.1 Nelson-Seiberg argument

In this subsection, we study the NS argument within the framework of supergravity theory.

In the case of supergravity, F-flat conditions (2.1) are modified as

DIW ≡ WI + KIW = 0,

where K denotes the Kähler potential, K(|Y |, χi, χ̄i). In the field basis (2.2) with the

superpotential (2.3), these are written as

Dχi
W = Y 2/qY (ζi + Kiζ) = 0,

DY W = (2/qY + Y KY )X2/qY −1ζ = 0.

Then, we find the following two candidates of R-breaking SUSY solutions in supergravity,

ζi = 0, ζ = 0, (3.1)

and

Dχi
ζ = ζi + Kiζ = 0, 2/qY + Y KY = 0. (3.2)

The first conditions (3.1) contain n complex equations for n − 1 complex variables,

and the situation is the same as the case of global SUSY (2.6), that is, the solution does

not exist for a generic function ζ. On the other hand, the second conditions (3.2) are n

complex equations for n complex variables which can have a solution. This corresponds to

a SUSY stationary point specialized to R-symmetric supergravity.

In this subsection, we analyze the special SUSY stationary solution (3.2) which appears

due to purely the supergravity effect and does not obey the NS condition. Then, in the

following we assume that there is a solution for

2/qY + Y KY = 0. (3.3)
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For instance, if the Kähler potential is given by

K =
∑

nY =1

cnY
|Y |2nY + K̂(χi, χ̄i), (3.4)

the condition (3.3) becomes

2/qY +
∑

nY =1

nY cnY
|Y |2nY = 0.

Then, we need at least one negative value of {cnY
, qY } to have a solution. In the simplest

minimal case with cnY >1 = 0 (and then KY Ȳ = c1 > 0), a negative charge, qY < 0, is

required.

A nontrivial point of this solution is that this SUSY stationary point is always tachyonic

as we can see from the arguments in appendix A. In addition, we can find a SUSY breaking

minima along the direction Dχi
ζ = 0 (the first condition in eq. (3.2)), if we assume that χi

receives a heavy SUSY mass m2
χi

≫ m2
3/2 by the condition Dχi

W = 0. This is a reasonable

assumption because χi has a vanishing R-charge and ζ(χi) in W is assumed to be a generic

function.

The scalar potential along Dχi
ζ = 0 is found to be

v(Y ) = V
∣

∣

∣

Dχi
f=0

= eK
(

K−1
Y Ȳ

|2/qY + KY Y |2 − 3|Y |2
)

|Y |2(2/qY −1)|ζ|2.

Again, for the minimal Kähler potential (3.4) with c1 = 1 and cnY >1 = 0, the stationary

condition

∂Y v(Y ) = eK̂(〈χi〉,〈χ̄i〉)e|Y |2 |Y |2/qY −2(2/qY + |Y |2)
×

(

|Y |4 + 2(2/qY − 1)|Y |2 + (2/qY )2 − 2/qY

)

= 0,

leads to solutions

|Y |2 = −2/qY , (3.5)

and

|Y |2 = 1 − 2/qY ±
√

1 − 2/qY . (3.6)

The first solution (3.5) corresponds to the SUSY saddle point and the second solutions (3.6)

are SUSY breaking minima. We can find this kind of SUSY breaking minima in a similar

way for more generic Kähler potential.

We can study the same system in a different view point. We redefine the field Y as

T = − 2

aqY
ln Y, (3.7)

where a is a real constant. In this basis, the Kähler potential and the superpotential (2.3)

is written as

K = K(T + T̄ , χi, χ̄i),

W = e−aT ζ(χi). (3.8)
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This type of Kähler and superpotential appear in the four-dimensional effective theory

derived from superstring theory, where T may be a modulus field associated to some

compactified dimensions. In such a case, the Kähler potential is typically given by

K = −nT ln(T + T̄ ) + K̂(χi, χ̄i),

where nT is a fractional number, and the T -dependence of the superpotential (3.8) may

originate from nonperturbative effects such as string/D-brane instanton effects and gaugino

condensation effects, where the corresponding gauge coupling is determined by the vacuum

value of T . In this case, the scalar potential along Dχi
ζ = 0 is given by

v(T ) = V
∣

∣

∣

Dχi
f=0

= eK
(

K−1
T T̄

(KT − a)2 − 3
)

|e−aT ζ|2,

and then the stationary condition

∂tv(t) = −eK̂(〈χi〉,〈χ̄i〉)e−att−nT−1

×(at + nT )
(

(a2/nT )t2 + 2a(1 − 1/nT )t + nT − 3
)

= 0,

results in a SUSY saddle point t = −n/a and SUSY breaking minima

t = −(nT/a)(1 − 1/nT ) ± (nT |a|/a2)
√

5/nT + 1/n2
T ,

where t = T + T̄ .

In the literature, there are examples of the models which have this kind of vacuum

structure of the potential. Typical superstring models have several moduli TI with the

Kähler potential K = ln
∏

I(TI + T̄I)
−nTI . The superpotential induced by some nonper-

turbative effects is given by

W =
∑

n

Ane
P

I aI
nTI ,

where An and aI
n are constants. If the number of the moduli is the same as or larger

than the number of the nonperturbative terms appearing in the superpotential [15], we can

define an R-symmetry. A particular linear combination of TI ’s corresponds to T in eq. (3.8)

which is determined by the condition that all the remaining combinations corresponding

χi’s receive a heavy mass by the SUSY condition Dχi
W = 0. This is possible for certain

values of aI
n. For the two moduli with double nonperturbative terms, i.e., racetrack models,

a detailed analysis was carried out in ref. [16].

We stress that the analysis of the SUSY breaking minimum as well as the SUSY saddle

point in this subsection is based on the assumption that all the other fields χi than Y or

T are stabilized by Dχi
W = 0, that is, by the SUSY masses [17]. We comment that these

stationary solutions have a nonvanishing and negative vacuum energy. We need to uplift the

SUSY breaking minimum to a Minkowski vacuum in order to identify this minimum as the

one we are living. For such purpose, we need another sector which provides the uplifting

energy and is well sequestered in order not to spoil the original structure of dynamical
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SUSY breaking. Such sector can be realized by a dynamically generated F-term [18, 19]

for which the discussions in the following sections would be important.

In summary, there is a possibility of special SUSY stationary solution in R-symmetric

supergravity with a generic superpotential. However, it is always a saddle point at best and

we find SUSY breaking minima with lower vacuum energy. This may imply that the NS

argument for a dynamical SUSY breaking is qualitatively correct also in this case, although

there is a SUSY solution. Furthermore, the NS argument still holds in supergravity as long

as the Kähler potential satisfies 2/qY +Y KY 6= 0 for any value of Y in the field basis (2.2).

For instance, in typical models with qY > 0 and K = |Y |2, we always find 2/qY +Y KY > 0.

3.2 Generalized O’Raifeartaigh model in supergravity

Now we consider the generalized OR model (2.7) in supergravity. The F-flat conditions (2.8)

for Xa become

DXaW = ∂XaW + (∂XaK)W

=
∑

b

Mab(Xc, φi) (gb(φi) + δb1f) = 0, (3.9)

where

Mab(Xc, φi) = δab + KXaXb.

We define its determinant as

∆ ≡ detMab = 1 +
∑

a

KXaXa. (3.10)

If there is no solution for ∆ = 0, the matrix Mab has an inverse matrix and consequently

the F-flat conditions (3.9) are reduced to the same ones as eq. (2.8) in the global SUSY,

ga(φi) + δa1f = 0,

which does not allow a solution for r > s in general. However, in the limit f → 0 in the

tilde basis (2.12), these equations are satisfied at φi = 0. Thus, the constant f represents

the typical size of SUSY breaking effects and ga(φi) as the global SUSY case. We comment

that the situation changes if there exists a solution of ∆ = 0. Actually, the condition

∆ = 0 is an analogue of the second condition in eq. (3.2). Then, we can carry out a similar

analysis as in the previous subsection also for this OR model. That is straightforward and

is omitted here. Note that the condition ∆ = 0 is never satisfied for a minimal Kähler

potential,

K =
∑

a

|Xa|2 +
∑

i

|φi|2. (3.11)

In the following, we just assume that there is no solution for ∆ = 0.

We comment that, even in supergravity, the scalar potential is positive, V > 0, in the

generalized OR model (2.12) with the minimal Kähler potential (3.11). In this case, the

scalar potential is written as

V = eK
[

(ḡa + δa1f̄){δab + (|Xc|2 − 1)X̄aXb}(gb + δb1f) + |XaDφi
ga|2

]

.
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For any vacuum values of Xa, we can always rotate their basis as

Uab Xb = X̂a = (0, . . . , 0, X̂c, 0, . . . , 0),

by a unitary matrix U(Xa), and in this basis we can write

e−KV = {(|X̂c|2 − 1/2)2 + 3/4}|ĝc|2 +
∑

a6=c

|ĝa|2 +
∑

i

|X̂cDφi
ĝc|2 > 0,

where ĝa = (U †)ab (gb + δb1f). Note that ĝa are now Xa-dependent functions. As discussed

above, the conditions, ĝa(φ) = 0, can not be satisfied at the same time. Thus, the vacuum

energy must be positive, V > 0. Since typical magnitudes of ĝa(φ) would be of O(f),

we would estimate V ∼ f2. To realize the almost vanishing vacuum energy V ≈ 0 at

this SUSY breaking minimum, we need a negative and sizable contribution to the vacuum

energy, which can be generated by R-symmetry breaking effects, e.g., the constant term in

the superpotential.

4. Explicit R-symmetry breaking in supergravity

Here we study explicit R-symmetry breaking terms in supergravity and examine whether

SUSY solutions can be found by adding explicit R-symmetry breaking terms to the NS

model and the generalized OR model. In the previous section, we have pointed out that

there is a SUSY stationary point when the condition (3.3) or the condition ∆ = 0 is

satisfied. In the following sections, we consider the models, where such conditions are

not satisfied, and SUSY is broken in the NS and generalized OR models even within the

framework of supergravity like global SUSY theory.

First we consider the NS model with explicit R-symmetry breaking terms WR/ =

w(Y, χi). The total superpotential is written as,

W = Y 2/qY ζ(χi) + w(Y, χi).

In this case, F-flat conditions of supergravity theory, DY W = Dχi
W = 0, do not lead to

over-constrained conditions for any non-vanishing function w(Y, χi). It is remarkable that

within the framework of supergravity theory the constant term WR/ = c breaks R-symmetry

and even such term is enough to relax the over-constrained conditions.

4.1 Generalized O’Raifeartaigh model

Let us study more explicitly the generalized OR model with explicit R-symmetry breaking

terms WR/ = w(Xa, φi). The total superpotential is written as,

W = fX1 +

r
∑

a=1

ga(φi)Xa + w(Xa, φi).
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First, we consider the case with the constant R-symmetry breaking term, WR/ = c. In this

case, F-flat conditions are written explicitly as

DXaW = fδa1 + ga(φi) + KXa

(

fX1 +

r
∑

a=1

ga(φi)Xa + c

)

= 0,

Dφi
W =

∑

a

Xa∂iga(φi) + Kφi

(

fX1 +

r
∑

a=1

ga(φi)Xa + c

)

= 0.

The former conditions are not always over-constrained for c 6= 0. Furthermore, the vacuum

expectation value of W and at least (r − s) vacuum values of KXa are required to be non-

vanishing. Otherwise, the former conditions become over-constrained for generic functions

ga(φi). Furthermore, when KXa for a 6= 1 does not vanish, all vacuum values of φi can

not vanish to satisfy DXaW = ga(φi) + KXaW = 0. Thus, a SUSY solution can be

found by adding WR/ = c. This solution corresponds to the AdS SUSY minimum, because

non-vanishing 〈W 〉 is required and the scalar potential at this point is evaluated as V =

−3eK |W |2 < 0. The values of the constant c and 〈W 〉 must be sizable, because this AdS

SUSY point disappears in the limit that c → 0 or 〈W 〉 → 0. Magnitudes of c and 〈W 〉 are

expected to be comparable with f when KXa = O(1). Hence, we can find the new type of

SUSY solution, which can not be found in global SUSY theory. However, that requires large

values of c and 〈W 〉, and may have sizable effects on the previous SUSY breaking minimum,

which is found in the generalized OR model without R-symmetry breaking terms.

Similarly, we can discuss the case that R-symmetry breaking terms include only φi

fields, i.e., WR/ = w(φi). In this case, F-flat conditions along Xa, DXaW = 0, are written

as

DXaW = fδa1 + ga(φi) + KXa

(

fX1 +

r
∑

a=1

ga(φi)Xa + w(φi)

)

= 0.

Thus, the situation is quite similar to the case with WR/ = c. To have a SUSY solution,

it is required that 〈W 〉, 〈w(φi)〉 and at least (r − s) vacuum values of KXa must be non-

vanishing. Sizes of 〈W 〉 and 〈w(φi)〉 are expected to be comparable with f .

Finally, we consider the case that R-symmetry breaking terms include Xa fields, WR/ =

w(Xa, φi). In this case, F-flat conditions along Xa, DXaW = 0, are written as

DXaW = fδa1 + ga(φi) + ∂Xaw(Xa, φi) + KXaW = 0.

When KXaW is sufficiently small, the above F-flat conditions correspond to F-flat con-

ditions in global SUSY theory. In such a case, we have a SUSY solution when w(Xa, φi)

depend on at least (r−s) Xa’s. Otherwise, the global SUSY solution can not be found, but

a SUSY solution with 〈w(Xa, φi)〉 6= 0 and 〈W 〉 6= 0 can be found within the framework of

supergravity theory. Such situation is similar to the case with WR/ = c.

We have discussed that the NS model and generalized OR model with R-symmetry

breaking terms have SUSY solutions with 〈W 〉 6= 0 in supergravity theory. If the SUSY

breaking minimum, which is found without R-symmetry breaking terms, is not destabilized
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by the presence of R-symmetry breaking terms, the previous SUSY breaking minimum

would correspond to a SUSY breaking metastable vacuum. However, a sizable vacuum

value of superpotential is required unless ∂Xaw(Xa, φi) 6= 0 for at least (r − s) Xa fields.

Such large superpotential (even if that is a constant term) would affect the stability of the

previous SUSY breaking minimum.

Furthermore, we have another reason to have a large size of 〈W 〉 at the previous

SUSY breaking minimum. At the previous SUSY breaking minimum, the vacuum energy

is estimated as V ∼ |f |2 > 0 for 〈W 〉 = 0. To realize the almost vanishing vacuum energy,

V ≈ 0, we need a non-vanishing value of 〈W 〉, which are comparable with f . In this

case, supergravity effects at the previous SUSY breaking minimum are not negligible. This

purpose to realize V ≈ 0 has the implication even for the case that R-symmetry breaking

terms include more than (r−s) Xa fields. In this case, we can find a (global) SUSY solution

even for 〈W 〉 = 0. However, realization of V ≈ 0 requires a sizable vacuum value of 〈W 〉,
although values 〈W 〉 at the SUSY breaking minimum and SUSY preserving minimum are

not the same. Hence, it is quite non-trivial whether one can realize a metastable SUSY

breaking vacuum with V ≈ 0 in supergravity theory, which has a SUSY minimum. We will

study this possibility concretely by using simple classes of the generalized OR models in the

following sections. We will concentrate ourselves to the minimal Kähler potential (3.11) in

most cases of the following discussions.

4.2 Classification of R-breaking terms in supergravity

In this subsection and the following sections, we consider minutely the previous discussions

about the explicit R-symmetry breaking in the supergravity framework by examining con-

crete examples. We introduce the explicit R-symmetry breaking terms WR/ into the above

supergravity OR model,

WR/ = c(φi) +
1

2

∑

a,b

m ǫab(φi)XaXb + · · · , (4.1)

where c(φi) and ǫab(φi) are generic functions of φi including φ-independent constants, and

the ellipsis denotes the higher order terms in Xa. Note that, as mentioned before, only

the ǫab(φi) terms are relevant to the recovery of SUSY vacua in the case of global SUSY.

Now we have the total superpotential, W = WOR + WR/. The F-flat conditions (2.13) are

modified as

DXaW =
∑

b

Mab

(

gb(φi) + δa1f1 +
∑

c,d

M−1
bc ǫcd(φi)Xd + ∆−1KXb

WR/

)

= 0. (4.2)

Here we find that all the terms in WR/ including c(φi) are accompanied by Xa in the above

F-flat conditions and then have a possibility for restoring SUSY, contrary to the case of

global SUSY explained in the previous section.

Most notably, just a constant superpotential

WR/ = c, (4.3)
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i.e., c(φi) = c and ǫab(φi) = 0, can restore SUSY. In this case with the minimal Kähler

potential (3.11), we find a solution for eq. (4.2) as

X̄a = −c−1∆ ga(φi), (4.4)

where ∆ = 1 +
∑

a |Xa|2 defined in eq. (3.10) is real and positive. From eq. (4.4), Xa can

be written in terms of φi, and then ∆ is given by

∆ =
|c|2 ± |c|

√

|c|2 − 4
∑

a |ga(φi)|
2
∑

a |ga(φi)|
,

which should be a real number. Therefore, in order for the SUSY solution (4.4) to be valid,

the constant superpotential c must satisfy the condition

4
∑

a

|ga(〈φi〉)|2 ≤ |c|2, (4.5)

where 〈φi〉 are solutions of Dφi
W = 0 under the condition (4.4).

Because X1 is distinguished in the superpotential (2.12), we divide the generic R-

breaking terms (4.1) into two pieces:

WR/ = W
(A)
R/ + W

(B)
R/ ,

where

W
(A)
R/ (Xa6=1; φi) = c(φi) +

1

2

∑

a,b6=1

m ǫab(φi)XaXb + · · · , (4.6)

W
(B)
R/ (X1; Xa6=1, φi) =

∑

a6=1

m ǫa1(φi)XaX1 +
1

2
m ǫ11(φi)X

2
1 + · · · . (4.7)

The ellipses denote the higher order terms in terms of Xa6=1 in W
(A)
R/ , and those of X1 and

Xa6=1 in W
(B)
R/ . Without loss of generality, we can assume that ǫ11(0) is real and positive

among ǫab(0), which is referred as ǫ in section 6.

5. Type-A breaking: Polonyi-like models

In this section, we study the effect of R-breaking terms (4.6) which we call the A-type

breaking,

W = WOR + W
(A)
R/ .

Because this type of breaking terms does not contain X1, we find the Polonyi model [20]

W |Xa 6=1=0,φi=0 = WPolonyi ≡ fX1 + c, (5.1)

in the hypersurface Xa6=1 = 0, φi = 0 of the scalar potential, where c = c(0). This

hypersurface would be a stationary plane in the Xa6=1- and the φi-directions if ∂φi
ga6=1(0)

are sufficiently large, which correspond to SUSY masses for Xa6=1 and φi on that plane.
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Moreover, if mi
1 and/or hij

1 in

g1(φi) = mi
1φi + hij

1 φiφj + · · · , (5.2)

are nonvanishing, the Polonyi model in this hypersurface can be affected/modified by a

tree-level SUSY mass and/or a one-loop SUSY breaking mass for X1. Then, we further

classify the A-type breaking models into two cases, g1(φi) = 0 and g1(φi) 6= 0.

5.1 Decoupled case: g1(φi) = 0

In the case with g1(φi) = 0, the superpotential of the A-type breaking models is written as

W = fX1 +
∑

a6=1

ga(φi)Xa + c(φi) +
1

2

∑

a,b6=1

mǫab(φi)XaXb + · · ·

= c + fX1 +
1

2
µABΦAΦB + · · · ,

where ΦA = (Xa6=1, φi) with the index A = (a 6= 1, i). The SUSY mass matrix µAB is given

by the R-breaking components, µa6=1,b6=1 = mǫab(0), µij = ∂φi
∂φj

c(0) and the R-symmetric

components, µa6=1,i = 2∂φi
ga(0). After the unitary rotation which makes µAB diagonal,

the above superpotential takes the form of

W = c + fX1 +
1

2
µAΦ2

A + · · · , (5.3)

where µA represents the eigenvalues of µAB. Because of the SUSY mass µA, the field ΦA

would be integrated out without affecting the low energy dynamics of X1, because X1 is

completely decoupled in the present case.4

Then, the effective action for X ≡ X1 is just determined by the Polonyi superpoten-

tial (5.1), where the phase of c and f can be eliminated by the U(1)R rotation and the

rephasing of X1. Assuming the minimal Kähler potential (3.11) for simplicity, the effective

scalar potential is minimized by a real vacuum value X = X̄ = x satisfying the stationary

condition

VX = eGGX(GXX + G2
X − 2) = 0,

where G = K + ln |W |2 and

GXX + G2
X − 2 = fW−1(x3 + f−1cx2 − 2f−1c), (5.4)

GX = fW−1(x2 + f−1cx + 1). (5.5)

The F-flat condition for X corresponds to GX = 0, and the SUSY breaking stationary

point is determined by the condition GXX + G2
X − 2 = 0.

As we declared, we persist in obtaining a vanishing vacuum energy at the SUSY break-

ing minimum. Then in addition to the stationary condition GXX + G2
X − 2 = 0, we set

4We may have to assume that the Kähler mixing is also zero or negligible between X1 and the others.
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V = eG(GXX̄ |GX |2 − 3) = 0. In this case, we have to take a definite value of the constant

c and find two solutions

(x, f−1c) = (
√

3 − 1, 2 −
√

3), (5.6)

and

(x, f−1c) = (−
√

3 − 1, 2 +
√

3). (5.7)

The mass eigenvalues of (ReX, ImX) are computed as (2
√

3f2, (4 − 2
√

3)f2) for the first

solution (5.6), and (−2
√

3f2, (4+2
√

3)f2) for the second one (5.7), at this SUSY breaking

Minkowski stationary point where W = f . Then, only the first solution (5.6) can be a

minimum of the potential, while the second one (5.7) is a saddle point. We comment that

φi and Xa6=1 directions would not possess tachyonic masses at these points for sufficiently

large SUSY mass µA compared with the SUSY breaking mass f . Therefore, the candidate

for our present universe, where the SUSY is broken with (almost) vanishing vacuum energy,

is the first solution (5.6).

In addition to a SUSY breaking solution satisfying GXX + G2
X − 2 = 0, we have a

SUSY solution GX = 0 due to the R-breaking effect c 6= 0, that is,

x± =
1

2
(−f−1c ±

√

(f−1c)2 − 4), (5.8)

if the R-breaking constant c satisfies

|f−1c| ≥ 2. (5.9)

Note that this condition (5.9) corresponds to eq. (4.5) in the previous general argument

for the generalized OR model. The mass eigenvalues of (ReX, ImX) are computed as

W 2
±(x2

± − 2)(x2
± + 1) and W 2

±(x2
± − 1)(x2

± + 2) at this SUSY AdS stationary point where

|W±| = |fx± + c| =
1

2

∣

∣

∣
f(f−1c ±

√

(f−1c)2 − 4)
∣

∣

∣
> 0,

and then we obtain

V = −3eG = −3ex2
± |W±|2 < 0.

Remark that, in the vanishing (one of) R-breaking limit, c → 0, the condition (5.9) is

not satisfied, and the SUSY solution (5.8) disappears. In the other words, this SUSY

solution is a consequence of the R-breaking constant term c in the superpotential. Due to

the appearance of this SUSY solution, there is a possibility that the SUSY breaking point

determined by GXX + G2
X − 2 = 0 becomes a metastable vacuum as in the case of global

SUSY explained previously.

However, this is not the case. Interestingly, if we tune the R-breaking constant super-

potential c as f−1c = 2 −
√

3 so that the solution (5.6) with the vanishing vacuum energy

is realized, the condition (5.9) is not satisfied and the SUSY stationary solution (5.8) dis-

appears. In such a sense, the constant R-breaking term c does not lead to a metastability

of SUSY breaking Minkowski minimum (5.6).
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Next, we consider the SUSY stationary solutions outside the Polonyi slice Xa6=1 = 0,

φi = 0. For the superpotential (5.3), the F-flat directions are determined by

DΦA
W = KAW + µAΦA + · · · = 0,

DX1
W = f + KX1

W = 0,

which can be satisfied by distinguishing a single field ΦB 6= 0 for ∃B as

W = −K−1
B ΦB(µB + · · ·) = −K−1

X1
f (for ∃B), (5.10)

ΦA = KA = 0 (for A 6= B),

where the ellipsis represents the higher order terms of ΦB . The first line gives two complex

equations for two complex variables X1 and Φ∃B , which have a solution in general.

For example, if the Kähler potential is minimal (3.11), all the parameters in the su-

perpotential are real and there is no higher order terms of ΦB (no ellipses in the above

expressions), then the solution for eq. (5.10) is found as

|ΦB|2 = −2

(

c

µB
+

f2

µ2
B

+ 1

)

> 0, ΦA 6=B = 0. (5.11)

For this value of ΦB , the remaining condition DX1
W = 0 is satisfied by

X1 = f/µB.

Note that the number of this SUSY points is nX + nφ − 1 because the solution (5.11) is

valid for every choice of B = (b 6= 1, j). In order for the solution (5.11) to be valid, the

parameter µB must satisfy

µ2
B + cµB + f2 ≤ 0.

This leads to the same condition (5.9) for the R-breaking constant term c as in the Polonyi-

type SUSY solution.

In summary, the A-type breaking terms (4.6) can restore SUSY in the generalized OR

model (2.7) or equivalently (2.12) in general. However, if we tune the R-breaking constant

term in the superpotential so that the SUSY breaking minimum has a vanishing vacuum

energy, i.e., (5.6), the SUSY solutions (5.8) and (5.11) disappear. Therefore, in this sense,

the A-type R-symmetry breaking terms do not lead to a metastability of the SUSY breaking

(Minkowski) vacuum aside from a possibility of the existence of more complicated SUSY

solutions than (5.11).

5.2 Generic case: g1(φi) 6= 0

Now we turn on a nonvanishing g1(φi) as in eq. (5.2). With this term, the tree-level (field

dependent) mass matrices in the φi = 0 plane contain the following contributions,

VX1X̄1
|φl=0 = |mi

1|2 + · · · ,

Vφiφ̄j̄
|φl=0 = mi

1m̄
j̄
1 + 4hik

1 h̄j̄k̄
1 |X1|2 + · · · ,

Vφiφj
|φl=0 = hij

1 f̄ + · · · ,

VX1φi
|φl=0 = 2hij

1 m̄j̄
1X1 + · · · , (5.12)
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where the ellipses represent the original terms involving Xa6=1, those coming from c(φi),

and the supergravity corrections. Here the doubled indices are summed up. The Kähler

covariant derivatives of the superpotential in the hypersurface φi = 0, Xa6=1 = 0 are given

by

DX1
W |φl=0 = f + KX1

W, DXa 6=0
W |φl=0 = 0, Dφi

W |φl=0 = mi
1X1.

From the third equation, we find that φi can not be integrated out prior to X1 by the F-flat

condition Dφi
W = 0 unlike before. This is because, with the nonvanishing mi

1, the source

field X1 for SUSY breaking shares a common SUSY mass with φi as shown in eq. (5.12).

In this case, the purely X1-direction is no longer special in the scalar potential. We

have to treat X1 and φi at the same time. The analysis is quite complicated, and then we

consider the case with mi
1 = 0 in the following, where g1(φi) starts from the quadratic term

in φi, and the φi can be integrated by their F-flat conditions Dφi
W = 0 resulting φi = 0.

We will comment about the case with mi
1 6= 0 in section 6.2 together with more general

R-breaking terms. The components of the mass matrices (5.12) are now reduced to

Vφiφ̄j̄
|φl=0 = 4hik

1 h̄j̄k̄
1 |X1|2 + · · · , Vφiφj

|φl=0 = hij
1 f̄ + · · · .

From the second equation, we observe that some linear combinations of Reφi and Imφj

become tachyonic in the φi = 0 plane if |hij
1 f | dominate the SUSY mass for φi. The X1-

dependence in the first one indicates that a SUSY breaking mass of X1 is generated at the

one-loop level, which is proportional to hij
1 .

Therefore, the effective potential after integrating out φi and Xa6=1 is given by

V = V (0) + V (1), V (0) = eG(GXX̄ |GX |2 − 3), V (1) = m2
X |X|2, (5.13)

where X ≡ X1, G = K + ln |W |2, and the effective superpotential W = WPolonyi is shown

in eq. (5.1). The one-loop mass mX is determined by hij
1 as well as f , which would be

considered as an independent parameter in the effective action. The stationary condition

VX = 0 results in [19]

X ≃ 2fc/m2
X ,

for c ∼ f ∼ mX ≪ 1 in the unit with MP l = 1, and the vanishing vacuum energy at this

minimum requires

c = f/
√

3 + O(f3/m2
X).

The SUSY is broken at this Minkowski minimum with DXW = f + O(f2) and W =

f/
√

3 + O(f2).

6. Adding type-B breaking: Metastable universe

In the previous section, we have analyzed the generalized OR model with the explicit R-

symmetry breaking terms (4.7) which do not involve the source field X1 for the dynamical

SUSY breaking.
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In this section, we study more general case with the R-breaking terms (4.6) including

X1, i.e.,

W = WOR + W
(A)
R/ + W

(B)
R/ .

In the type-B breaking terms (4.6), the first term with ǫa6=1,1(0) gives the common SUSY

mass for X1 and Xa6=1 in the φi = 0 plane. Then the situation is similar to the case with

a nonvanishing mi
1 in eq. (5.2), that is, we can not integrate out Xa6=1 prior to X1, and we

will include this case also in section 6.2.

By setting ǫa6=1,1(0) = 0, the superpotential in the hypersurface φi = Xa6=1 = 0 is given

by

W = fX +
1

2
mǫX2 + c + · · · , (6.1)

where X ≡ X1, ǫ = ǫ11(0) and the ellipsis stands for the higher order terms in X.

6.1 Decoupled case: g1(φi) = 0

As in the previous section, we first consider the case with g1(φi) = 0, where X1 is decoupled

from the others in the superpotential. In this case the hypersurface φi = Xa6=1 = 0 would

be stable in the φi-, Xa6=1-direction as in section 5.1. The effective theory in this slice is

described by the superpotential (6.1).

With the minimal Kähler potential (3.11), real parameters f , c, m and no higher order

terms (ellipsis) in the superpotential (6.1) for simplicity, the SUSY breaking and SUSY

stationary conditions are respectively given by eqs. (5.4) and (5.5). In the limit ǫ → 0 of

eq. (6.1), the SUSY breaking solution is given by eq. (5.6). Then we can find the deviation

of X from this point assuming ǫ ≪ 1 and m ∼ c1/3 ∼ f1/2. We find a SUSY breaking

minimum with a vanishing vacuum energy at

XSB = X0 + δX, X0 =
√

3 − 1, δX = −ǫm

2f
+ O(ǫ2), (6.2)

where the constant superpotential term c is tuned as

c = (2 −
√

3)f + (2
√

3 − 3)ǫm + O(ǫ2). (6.3)

On the other hand, a SUSY solution,

XSUSY ≃ − 2f

ǫm
, (6.4)

arises as a consequence of the B-type R-breaking term represented by the parameter ǫ,

although the vacuum energy is set to be vanishing at the SUSY breaking minimum. This

is unlike the case of SUSY solutions (5.8) and (5.11) caused by the introduction of A-type

R-breaking terms (4.6). The shift of SUSY breaking minimum δX in eq. (6.2) is rewritten

as

δX/X0 ≃ 1√
3 − 1

1

XSUSY
,

and we find

|XSUSY| >
1√

3 − 1
∼ O(1),
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Figure 1: Parameter region (white) of µB and ǫ allowing the SUSY solution (6.5). All the pa-

rameters are assumed to be real and the constant term c is fixed by the vanishing vacuum energy

condition (6.3) at the SUSY breaking minimum (6.2). In the shaded region, the SUSY solution (6.5)

is not allowed and the SUSY breaking solution (6.2) does not become metastable due to the R-

breaking effect parameterized by ǫ. We find no allowed region in the limit ǫ → 0 which corresponds

to the solution (5.11).

in order for the shift δX to reside in a perturbative region, |δX/X0| < 1.

This means that the vacuum value of |X| at the newly appeared SUSY vacuum must

be larger than the Planck scale MPl = 1, where the supergravity calculation might not

valid. It would be possible that the potential is lifted for |X| > 1 by the effect of quantum

gravity, the above SUSY vacuum is washed out and the SUSY breaking minimum remains

as a global minimum. If the supergravity approximation is valid even for |X| > 1 by any

reason, we obtain a constraint on the R-breaking parameter ǫ as

ǫ < 2(
√

3 − 1)|f/m|,

from the above condition.

We also find a SUSY minimum outside the hyperplane φi = Xa6=1 = 0, which is a

generalization of eq. (5.11), given by

|ΦB|2 = − 2

µB

{

µB + c +
f2

µB − ǫm

(

1 +
ǫm

2(µB − ǫm)

)}

≥ 0,

ΦA 6=B = KA 6=B = 0,

X =
f

µB − ǫm
, (6.5)

where we assumed the minimal Kähler potential (3.11), and the absence of the higher or-

der terms of X in the superpotential for concreteness. In the limit ǫ → 0, this solution is

– 23 –



J
H
E
P
1
1
(
2
0
0
7
)
0
4
4

reduced to (5.11). In contrast to (5.11), the above solution (6.5) does not disappear in all

of the parameter region, even after the vacuum energy at the SUSY breaking minimum is

set to zero as in eq. (6.2). Such parameter region of µB and ǫ allowing the SUSY solution

is shown in figure 1. In the shaded region, the SUSY solution (6.5) is not allowed and the

SUSY breaking solution does not become metastable due to the R-breaking effect repre-

sented by ǫ. Note that we find no allowed region along the ǫ = 0 axis, which corresponds

to the case of the solution (5.11).

6.2 Generic case: g1(φi) 6= 0

Finally we introduce nonvanishing g1(φ). As in section 5.2, we first consider the case

with mi
1 = 0 in eq. (5.2). In this case we can still integrate φi and Xa6=1 by use of

Dφi
W = DXa 6=1

W = 0 resulting in φi = Xa6=1 = 0.

The remnant of these heavy fields would be the one-loop mass mX for X1 = X in

eq. (5.13). The effective scalar potential is in the same form as eq. (5.13) but the effective

superpotential W in G = K+ln |W |2 is now replaced by eq. (6.1). For ǫ ≪ c ∼ f ∼ mX ≪ 1

in the unit with MPl = 1, we can obtain a SUSY breaking Minkowski minimum

XSB =
2fc

m2
X

(1 + O(ǫ2)), (6.6)

where the R-breaking constant

c = f/
√

3 + O(f3/m2
X ; ǫ2),

is determined by the vanishing vacuum energy condition.

The SUSY ground state in the hyperplane φi = Xa6=1 = 0 which originates from the R-

breaking parameter ǫ is the same as eq. (6.4), and the above breaking minimum becomes

metastable. Unlike (6.2), the SUSY breaking minimum (6.6) is not affected by the R-

breaking term at O(ǫ) due to the one-loop mass mX , that is, the SUSY minimum (6.4) is

independent of the SUSY breaking minimum (6.6) at this order. There might exist SUSY

points analogous to eq. (6.5) outside the hypersurface φi = Xa6=1 = 0 also in this case, but

the solution would be more complicated due to the nonvanishing hij
1 in eq. (5.2).

Finally we comment about the case with mi
1 6= 0 in eq. (5.2). In this case, as mentioned

in section 5.2, the field X1 has a SUSY mass with the same magnitude as those of φi’s as

shown in eq. (5.12). Then the field X1 in the field basis (2.12) is no longer special. In this

generalized OR model with most general R-breaking terms, the total superpotential would

be written as

W = fX1 +
∑

a=1

ga(φi)Xa + c(φi) +
1

2

∑

a,b=1

mǫab(φi)XaXb + · · ·

= c + fX1 +
1

2
µIJΦIΦJ + · · · ,

where ΦI = (Xa, φi), I = (a, i) and the ellipses denote the higher order terms in ΦI .

The SUSY mass matrix µIJ is given by the R-breaking components, µab = mǫab(0), µij =

∂φi
∂φj

c(0) and the R-symmetric components, µai = 2∂φi
ga(0). Note that µ1i = 2∂φi

g1(0) =
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2mi
1. After the unitary rotation which makes µIJ diagonal, the above superpotential takes

the form of

W = c + fU1IΦI +
1

2
µIΦ

2
I + · · · ,

where UIJ is the rotation matrix and µI represents the eigenvalues of µIJ . The F-flat

conditions, DIW = WI + KIW = 0, allow a solution in general and SUSY would not be

broken for mi
1 ∼ f .

7. Conclusion

We considered N = 1 global and local supersymmetric models with a continuous global

U(1)R symmetry, and studied the effect of explicit R-symmetry breaking terms in detail.

In global supersymmetric models, based on the argument by ISS, we have shown that

some sort of explicit R-symmetry breaking terms can restore SUSY, and the original SUSY

breaking vacuum can become metastable when a certain (but not generic) class of explicit

R-symmetry breaking terms are added and/or loop effects stabilize the original SUSY

breaking minimum.

We have executed similar analyses in R-symmetric supergravity models. First we

examined the general argument by NS in supergravity and found that it also holds with

local SUSY except for the nontrivial case where the Kähler potential allows solution for

the second condition in eq. (3.2). We presented concrete examples of this exception. These

models lead to AdS SUSY stationary solutions and associated SUSY breaking vacua with

lower vacuum energy. We found the general argument that this class of SUSY solutions

corresponds to at best a saddle point, referring to appendix A.

Then, we studied the generalized OR model in supergravity with explicit R-symmetry

breaking terms. We analyzed the structure of newly appeared SUSY stationary points as

a consequence of the R-breaking effect and classified them. We have shown that these

SUSY solutions disappear for type-A breaking terms (4.6), when we tune the R-breaking

constant term in the superpotential such that the original SUSY breaking minimum has

a vanishing vacuum energy. In this sense, the introduction of explicit R-breaking terms

does not always lead to a metastability of the SUSY breaking vacuum. On the other

hand, the introduction of type-B breaking terms (4.7) could cause a metastability of SUSY

Minkowski minimum. We examined a parameter region which yields metastable vacuum

in some concrete examples.

Acknowledgments

The authors would like to thank K. Choi and T. Higaki for useful discussions. H. A.

and T. K. are supported in part by the Grand-in-Aid for Scientific Research #182496 and

#17540251, respectively. T. K. is also supported in part by the Grant-in-Aid for the 21st

Century COE “The Center for Diversity and Universality in Physics” from the Ministry of

Education, Culture, Sports, Science and Technology of Japan.

– 25 –



J
H
E
P
1
1
(
2
0
0
7
)
0
4
4

A. Supersymmetric masses involving R-axion

In this appendix, we show some general results for the SUSY masses for the scalar compo-

nent of an R-axion multiplet. For this analysis, it is convenient to redefine the R-charged

superfield Y by

R =
2

qY
ln Y,

where R can be interpreted as the R-axion superfield. (Note that R = −aT in eq. (3.7).)

In this basis, the Kähler potential and the superpotential (2.3) is written as

K = K(R + R̄, χi, χ̄i),

W = eRζ(χi). (A.1)

From eq. (A.1), we find W−1∂m
Y W = 1 where m = 1, 2, . . . ., and obtain

GRR = KRR + W−1WRR − (W−1WR)2 = KRR = KRR̄,

GχiR = KχiR + W−1WχiR − (W−1Wχi
)(W−1WR) = KχiR = KχiR̄

.

Substituting these into the general formulae for the second derivatives at the SUSY point,

VIJ̄

∣

∣

∣

DKW=0
= eG(GMN̄GMIGN̄J̄ − 2GIJ̄ ),

VIJ

∣

∣

∣

DKW=0
= −eGGIJ ,

we find

VRR̄

∣

∣

∣

DKW=0
= VRR

∣

∣

∣

DKW=0
= −KRR̄ m2

3/2, (A.2)

VχiR̄

∣

∣

∣

DKW=0
= VχiR

∣

∣

∣

DKW=0
= −KχiR̄ m2

3/2, (A.3)

where m2
3/2 = eG is the gravitino mass square.

From eq. (A.2), the mass squared eigenvalues of (Re R, Im R) can be calculated as 0

and −2m2
3/2 with the canonical kinetic terms normalized by KRR̄ > 0. The first massless

eigenmode corresponds to the R-axion scalar associated to the spontaneously broken global

U(1)R symmetry. The second negative-definite eigenvalue indicates that the special SUSY

solution (3.2) is at best a saddle point solution. Note that the gravitino mass m3/2 is

nonvanishing at this point and the vacuum energy is negative. We also find from eq. (A.3)

that the mixing-mass between R and χi is vanishing if the Kähler (kinetic) mixing is

vanishing, KχiR̄
= 0. In this case, the R-axion direction is completely separated from the

other fields χi, that is, the above mass eigenvalues of R-axion multiplet become exact in

this case.

Finally we comment that the second derivatives (A.2) and (A.3) are all vanishing at

the SUSY point (3.1) where m3/2 = 0. In this case, both the real and the imaginary scalar

component of R-axion multiplet remain massless. Note that eq. (3.2) may also allow a

solution even in this case if ζ is not a generic function.
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